Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gen Virol ; 105(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38471041

RESUMO

Many viruses downregulate their cognate receptors, facilitating virus replication and pathogenesis via processes that are not yet fully understood. In the case of herpes simplex virus 1 (HSV1), the receptor binding protein glycoprotein D (gD) has been implicated in downregulation of its receptor nectin1, but current understanding of the process is limited. Some studies suggest that gD on the incoming virion is sufficient to achieve nectin1 downregulation, but the virus-encoded E3 ubiquitin ligase ICP0 has also been implicated. Here we have used the physiologically relevant nTERT human keratinocyte cell type - which we have previously shown to express readily detectable levels of endogenous nectin1 - to conduct a detailed investigation of nectin1 expression during HSV1 infection. In these cells, nectin1, but not nectin2 or the transferrin receptor, disappeared from the cell surface in a process that required virus protein synthesis rather than incoming virus, but did not involve virus-induced host shutoff. Furthermore, gD was not only required but was sufficient for nectin1 depletion, indicating that no other virus proteins are essential. NK cells were shown to be activated in the presence of keratinocytes, a process that was greatly inhibited in cells infected with wild-type virus. However, degranulation of NK cells was also inhibited in ΔgD-infected cells, indicating that blocking of NK cell activation was independent of gD downregulation of nectin1. By contrast, a superinfection time-course revealed that the ability of HSV1 infection to block subsequent infection of a GFP-expressing HSV1 was dependent on gD and occurred in line with the timing of nectin1 downregulation. Thus, the role of gD-dependent nectin1 impairment during HSV infection is important for virus infection, but not immune evasion, which is achieved by other mechanisms.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Superinfecção , Humanos , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Regulação para Baixo , Herpesvirus Humano 1/fisiologia , Queratinócitos , Receptores Virais/metabolismo , Proteínas do Envelope Viral/genética
2.
Cell Immunol ; 320: 62-70, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28942944

RESUMO

The Death Receptor 3 (DR3)/Tumour Necrosis Factor-like cytokine 1A (TL1A) axis stimulates effector T cells and type 2 innate lymphocytes (ILC2) that trigger cytokine release and drive disease pathology in several inflammatory and autoimmune diseases, including murine models of acute allergic lung inflammation (ALI). The aim of this study was to elucidate the role of DR3 in chronic ALI compared to acute ALI, using mice genetically deficient in the DR3 gene (DR3ko). Results showed DR3 expression in the lungs of wild-type mice was up-regulated following induction of acute ALI and this increased expression was maintained in chronic disease. DR3ko mice were resistant to cellular accumulation within the alveolar passages in acute, but not chronic ALI. However, DR3ko mice displayed reduced immuno-histopathology and goblet cell hyperplasia; hallmarks of the asthmatic phenotype; in chronic, but not acute ALI. These data suggest DR3 is a potential therapeutic target, involved in temporally distinct aspects of ALI progression and pathogenesis.


Assuntos
Células Caliciformes/patologia , Hipersensibilidade/imunologia , Pulmão/imunologia , Linfócitos/imunologia , Pneumonia/imunologia , Membro 25 de Receptores de Fatores de Necrose Tumoral/metabolismo , Doença Aguda , Animais , Células Cultivadas , Doença Crônica , Progressão da Doença , Feminino , Hiperplasia , Hipersensibilidade/fisiopatologia , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pneumonia/fisiopatologia , Membro 25 de Receptores de Fatores de Necrose Tumoral/genética , Células Th2/imunologia
3.
J Exp Med ; 205(11): 2457-64, 2008 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-18824582

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory disease of synovial joints that is associated with cartilage and bone destruction. Death Receptor 3 (DR3), a tumor necrosis factor (TNF) receptor superfamily member, has recently been associated with the pathogenesis of RA. We demonstrate that absence of DR3 confers resistance to the development of adverse bone pathology in experimental antigen-induced arthritis (AIA). DR3(ko) mice exhibited a reduction in all histopathological hallmarks of AIA but, in particular, failed to develop subchondral bone erosions and were completely protected from this characteristic of AIA. In contrast, TNF-like protein 1A (TL1A), the ligand for DR3, exacerbated disease in a dose- and DR3-dependent fashion. Analysis of osteoclast number within AIA joint revealed a reduction in areas susceptible to bone erosion in DR3(ko) mice, whereas in vitro osteoclastogenesis assays showed that TL1A could directly promote osteoclastogenesis in mouse and man. Treatment with antagonistic anti-TL1A mAb protected animals in a systemic model of RA disease collagen-induced arthritis. We therefore conclude that the DR3-TL1A pathway regulates joint destruction in two murine models of arthritis and represents a potential novel target for therapeutic intervention in inflammatory joint disease.


Assuntos
Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Osso e Ossos/patologia , Membro 25 de Receptores de Fatores de Necrose Tumoral/genética , Transdução de Sinais/imunologia , Animais , Anticorpos Monoclonais , Primers do DNA/genética , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoclastos/citologia , Osteoclastos/imunologia , Membro 25 de Receptores de Fatores de Necrose Tumoral/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estatísticas não Paramétricas , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...